Penerapan Teknologi Ramah Lingkungan Dalam Pemetaan Genangan Air Pada Wilayah Rawan Banjir Menggunakan Google Earth Engine (Studi Kasus: Kabupaten Demak)
Keywords:
Genangan Air, Google Earth Engine, Topographic Position Index, Topographic Wetness Index, MorfometriAbstract
Banjir merupakan salah satu bencana alam yang sering terjadi di Indonesia, khususnya di wilayah pesisir seperti Kabupaten Demak yang memiliki topografi relatif datar dan sistem drainase kurang memadai. Penelitian ini bertujuan untuk mengidentifikasi pola distribusi spasial dan temporal genangan air, menganalisis karakteristik morfometri wilayah, serta mengevaluasi efektivitas penerapan teknologi ramah lingkungan melalui Google Earth Engine (GEE) dalam pemetaan genangan air untuk mendukung mitigasi bencana banjir. Metode penelitian menggunakan pendekatan kuantitatif spasial dengan memanfaatkan citra radar Sentinel-1, data Global Surface Water (GSW), Digital Elevation Model (DEM) SRTM, dan data curah hujan periode 2023-2025. Analisis dilakukan
melalui platform GEE dengan mengintegrasikan parameter morfometri Topographic Wetness Index (TWI) dan Topographic Position Index (TPI). Hasil penelitian menunjukkan bahwa luas genangan banjir mengalami fluktuasi dari 8.380 ha (2023), turun menjadi 7.393 ha (2024), kemudian meningkat menjadi 8.171 ha (2025). Persistensi genangan menunjukkan tren peningkatan dengan rata-rata seasonality naik dari 4,07 bulan (2023) menjadi 7,10 bulan (2025), serta occurrence meningkat dari 16,51% menjadi 35,74%. Analisis morfometri mengungkapkan bahwa mayoritas genangan terjadi pada area dengan slope < 2,86° dan nilai TWI > 12, yang mencerminkan kondisi tanah datar dengan potensi akumulasi air tinggi. Penerapan teknologi GEE terbukti efektif dalam pemrosesan data spasial berskala besar dengan efisiensi waktu hingga 85% dan reduksi jejak karbon yang signifikan dibandingkan metode konvensional. Penelitian ini menyimpulkan bahwa integrasi teknologi penginderaan jauh berbasis cloud computing dengan analisis morfometri dapat memberikan solusi inovatif dan berkelanjutan untuk pemetaan genangan air yang mendukung perencanaan mitigasi bencana banjir yang lebih efektif.
References
Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., & Deguchi, T. (2011). Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59(3), 1753–1771.
https://doi.org/10.1007/s11069-011-9866-9
Alawiyah, A. M., & Harintaka, H. (2021). Identifikasi Genangan Banjir di Wilayah DKI Jakarta Menggunakan Citra Satelit Sentinel-1. JGISE: Journal of Geospatial Information Science and Engineering, 4(2), 95. https://doi.org/10.22146/jgise.68353
Aldrian, E., & Dwi Susanto, R. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452. https://doi.org/10.1002/joc.950
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine
Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350.
https://doi.org/10.1109/JSTARS.2020.3021052
Belay, H., Melesse, A. M., Tegegne, G., & Kassaye, S. M. (2025). Flood Inundation Mapping Using the
Google Earth Engine and HEC-RAS Under Land Use/Land Cover and Climate Changes in the
Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Remote Sensing, 17(7). https://doi.org/10.3390/rs17071283
Beven, K. J., & Kirkby, M. J. (1979). A Physically Based, Variable Contributing Area Model of Basin
Hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834
Buchori, I., Pramitasari, A., Sugiri, A., Maryono, M., Basuki, Y., & Sejati, A. W. (2018). Adaptation to
coastal flooding and inundation: Mitigations and migration pattern in Semarang City, Indonesia.
Ocean & Coastal Management, 163, 445–455.
https://doi.org/https://doi.org/10.1016/j.ocecoaman.2018.07.017
Chaussard, E., Amelung, F., Abidin, H., & Hong, S. H. (2013). Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128, 150–161. https://doi.org/10.1016/j.rse.2012.10.015
Clement, M. A., Kilsby, C. G., & Moore, P. (2018). Multi-temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2), 152–168.
https://doi.org/10.1111/jfr3.12303
DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J. W., & Lang, M. W. (2020). Rapid and robust
monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote
Sensing of Environment, 240, 111664. https://doi.org/https://doi.org/10.1016/j.rse.2020.111664
Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E., & van de Giesen, N. (2016). A 30 m resolution surfacewater mask including estimation of positional and thematic differences using landsat 8, SRTM and OPenStreetMap: A case study in the Murray-Darling basin, Australia. Remote Sensing, 8(5). https://doi.org/10.3390/rs8050386
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Hendon, H. H. (2003). Indonesian Rainfall Variability: Impacts of ENSO and Local Air-Sea Interaction.
Hermadi, I., Wulandari, & Dhira, D. (2022). Short Communication: Development of a protected birds
identification system using a convolutional neural network. Biodiversitas, 23(5), 2561–2569.
https://doi.org/10.13057/biodiv/d230537
Lindersson, S., Brandimarte, L., Mård, J., & Di Baldassarre, G. (2020). A review of freely accessible global datasets for the study of floods, droughts and their interactions with human societies. In Wiley Interdisciplinary Reviews: Water (Vol. 7, Issue 3). John Wiley and Sons Inc.
https://doi.org/10.1002/WAT2.1424
Long, S., Fatoyinbo, T. E., & Policelli, F. (2014). Flood extent mapping for Namibia using change
detection and thresholding with SAR. Environmental Research Letters, 9(3). https://doi.org/10.1088/1748-9326/9/3/035002
Marfai, M. A., & King, L. (2007). Coastal flood management in Semarang, Indonesia. Environmental
Geology, 55, 1507–1518. https://doi.org/10.1007/s00254-007-1101-3
Mehmood, H., Conway, C., & Perera, D. (2021). Mapping of flood areas using landsat with google earth engine cloud platform. Atmosphere, 12(7). https://doi.org/10.3390/atmos12070866
Nasution, A. M., & Nurtyawan, R. (2021, December 17). Identifikasi Sebaran Banjir Berdasarkan Studi Citra Sentinel-1 SAR (Studi Kasus: Kecamatan Cikampek dan Kecamatan Purwasari, Kabupaten Karawang). Prosiding FTSP Series 1. https://eproceeding.itenas.ac.id/index.php/ftsp/article/view/395
Pandey, A. C., Kaushik, K., & Parida, B. R. (2022). Google Earth Engine for Large-Scale Flood Mapping
Using SAR Data and Impact Assessment on Agriculture and Population of Ganga-Brahmaputra
Basin. Sustainability (Switzerland), 14(7). https://doi.org/10.3390/su14074210
Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584
Pratama, D., Sutikno, S., & Yusa, M. (2024). Pemetaan Daerah Rawan Ancaman Banjir di Area Kabupaten Kampar Dengan Menggunakan GEE (Google Earth Engine). JURNAL SAINTIS, 24(01), 21–28. https://doi.org/10.25299/saintis.2024.vol24(01).15487
Purnama, S. M., Ayu Karondia, L., Renes, R., Wahyuningsih, N., & Muflichin Purnama, S. (2022, December 11). Identifikasi Dampak Perubahan Iklim Berbasis Cloud Engine (Studi Kasus: Time Series Bencana Banjir Desa Tumbit, Kecamatan Teluk Bayur Kabupaten Berau).
Shen, X., Wang, D., Mao, K., Anagnostou, E., & Hong, Y. (2019). Inundation extent mapping by synthetic aperture radar: A review. Remote Sensing, 11(7). https://doi.org/10.3390/RS11070879
Sørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index:
Evaluation of different methods based on field observations. Hydrology and Earth System Sciences,
10(1), 101–112. https://doi.org/10.5194/hess-10-101-2006
Sumiati, S., Ummah, E. N., Fernanda, M. F., & Ridwana, R. (2023). Perbandingan Hasil Metode Algoritma Backscattering dan Otsu Thresholding dalam Identifikasi Genangan Banjir di Kota Bogor. Media Komunikasi Geografi, 24(1), 1–14. https://doi.org/10.23887/mkg.v24i1.56080
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 164, pp. 152–170). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2020.04.001
Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332– 343. https://doi.org/10.1016/j.jhydrol.2014.03.008
Uddin, K., Matin, M. A., & Meyer, F. J. (2019). Operational flood mapping using multi-temporal Sentinel-1 SAR images: A case study from Bangladesh. Remote Sensing, 11(13).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kenya Cita Ayudhia (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

