Penerapan Teknologi Ramah Lingkungan Dalam Pemetaan Genangan Air Pada Wilayah Rawan Banjir Menggunakan Google Earth Engine (Studi Kasus: Kabupaten Demak)

Authors

  • Kenya Cita Ayudhia Universitas Gadjah Mada
  • Nur Sawiji SDN Bandungrejo 1 Mranggen

Keywords:

Genangan Air, Google Earth Engine, Topographic Position Index, Topographic Wetness Index, Morfometri

Abstract

Banjir merupakan salah satu bencana alam yang sering terjadi di Indonesia, khususnya di wilayah pesisir seperti Kabupaten Demak yang memiliki topografi relatif datar dan sistem drainase kurang memadai. Penelitian ini bertujuan untuk mengidentifikasi pola distribusi spasial dan temporal genangan air, menganalisis karakteristik morfometri wilayah, serta mengevaluasi efektivitas penerapan teknologi ramah lingkungan melalui Google Earth Engine (GEE) dalam pemetaan genangan air untuk mendukung mitigasi bencana banjir. Metode penelitian menggunakan pendekatan kuantitatif spasial dengan memanfaatkan citra radar Sentinel-1, data Global Surface Water (GSW), Digital Elevation Model (DEM) SRTM, dan data curah hujan periode 2023-2025. Analisis dilakukan
melalui platform GEE dengan mengintegrasikan parameter morfometri Topographic Wetness Index (TWI) dan Topographic Position Index (TPI). Hasil penelitian menunjukkan bahwa luas genangan banjir mengalami fluktuasi dari 8.380 ha (2023), turun menjadi 7.393 ha (2024), kemudian meningkat menjadi 8.171 ha (2025). Persistensi genangan menunjukkan tren peningkatan dengan rata-rata seasonality naik dari 4,07 bulan (2023) menjadi 7,10 bulan (2025), serta occurrence meningkat dari 16,51% menjadi 35,74%. Analisis morfometri mengungkapkan bahwa mayoritas genangan terjadi pada area dengan slope < 2,86° dan nilai TWI > 12, yang mencerminkan kondisi tanah datar dengan potensi akumulasi air tinggi. Penerapan teknologi GEE terbukti efektif dalam pemrosesan data spasial berskala besar dengan efisiensi waktu hingga 85% dan reduksi jejak karbon yang signifikan dibandingkan metode konvensional. Penelitian ini menyimpulkan bahwa integrasi teknologi penginderaan jauh berbasis cloud computing dengan analisis morfometri dapat memberikan solusi inovatif dan berkelanjutan untuk pemetaan genangan air yang mendukung perencanaan mitigasi bencana banjir yang lebih efektif.

References

Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., & Deguchi, T. (2011). Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59(3), 1753–1771.

https://doi.org/10.1007/s11069-011-9866-9

Alawiyah, A. M., & Harintaka, H. (2021). Identifikasi Genangan Banjir di Wilayah DKI Jakarta Menggunakan Citra Satelit Sentinel-1. JGISE: Journal of Geospatial Information Science and Engineering, 4(2), 95. https://doi.org/10.22146/jgise.68353

Aldrian, E., & Dwi Susanto, R. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452. https://doi.org/10.1002/joc.950

Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine

Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350.

https://doi.org/10.1109/JSTARS.2020.3021052

Belay, H., Melesse, A. M., Tegegne, G., & Kassaye, S. M. (2025). Flood Inundation Mapping Using the

Google Earth Engine and HEC-RAS Under Land Use/Land Cover and Climate Changes in the

Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Remote Sensing, 17(7). https://doi.org/10.3390/rs17071283

Beven, K. J., & Kirkby, M. J. (1979). A Physically Based, Variable Contributing Area Model of Basin

Hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834

Buchori, I., Pramitasari, A., Sugiri, A., Maryono, M., Basuki, Y., & Sejati, A. W. (2018). Adaptation to

coastal flooding and inundation: Mitigations and migration pattern in Semarang City, Indonesia.

Ocean & Coastal Management, 163, 445–455.

https://doi.org/https://doi.org/10.1016/j.ocecoaman.2018.07.017

Chaussard, E., Amelung, F., Abidin, H., & Hong, S. H. (2013). Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128, 150–161. https://doi.org/10.1016/j.rse.2012.10.015

Clement, M. A., Kilsby, C. G., & Moore, P. (2018). Multi-temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2), 152–168.

https://doi.org/10.1111/jfr3.12303

DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J. W., & Lang, M. W. (2020). Rapid and robust

monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote

Sensing of Environment, 240, 111664. https://doi.org/https://doi.org/10.1016/j.rse.2020.111664

Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E., & van de Giesen, N. (2016). A 30 m resolution surfacewater mask including estimation of positional and thematic differences using landsat 8, SRTM and OPenStreetMap: A case study in the Murray-Darling basin, Australia. Remote Sensing, 8(5). https://doi.org/10.3390/rs8050386

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Hendon, H. H. (2003). Indonesian Rainfall Variability: Impacts of ENSO and Local Air-Sea Interaction.

Hermadi, I., Wulandari, & Dhira, D. (2022). Short Communication: Development of a protected birds

identification system using a convolutional neural network. Biodiversitas, 23(5), 2561–2569.

https://doi.org/10.13057/biodiv/d230537

Lindersson, S., Brandimarte, L., Mård, J., & Di Baldassarre, G. (2020). A review of freely accessible global datasets for the study of floods, droughts and their interactions with human societies. In Wiley Interdisciplinary Reviews: Water (Vol. 7, Issue 3). John Wiley and Sons Inc.

https://doi.org/10.1002/WAT2.1424

Long, S., Fatoyinbo, T. E., & Policelli, F. (2014). Flood extent mapping for Namibia using change

detection and thresholding with SAR. Environmental Research Letters, 9(3). https://doi.org/10.1088/1748-9326/9/3/035002

Marfai, M. A., & King, L. (2007). Coastal flood management in Semarang, Indonesia. Environmental

Geology, 55, 1507–1518. https://doi.org/10.1007/s00254-007-1101-3

Mehmood, H., Conway, C., & Perera, D. (2021). Mapping of flood areas using landsat with google earth engine cloud platform. Atmosphere, 12(7). https://doi.org/10.3390/atmos12070866

Nasution, A. M., & Nurtyawan, R. (2021, December 17). Identifikasi Sebaran Banjir Berdasarkan Studi Citra Sentinel-1 SAR (Studi Kasus: Kecamatan Cikampek dan Kecamatan Purwasari, Kabupaten Karawang). Prosiding FTSP Series 1. https://eproceeding.itenas.ac.id/index.php/ftsp/article/view/395

Pandey, A. C., Kaushik, K., & Parida, B. R. (2022). Google Earth Engine for Large-Scale Flood Mapping

Using SAR Data and Impact Assessment on Agriculture and Population of Ganga-Brahmaputra

Basin. Sustainability (Switzerland), 14(7). https://doi.org/10.3390/su14074210

Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584

Pratama, D., Sutikno, S., & Yusa, M. (2024). Pemetaan Daerah Rawan Ancaman Banjir di Area Kabupaten Kampar Dengan Menggunakan GEE (Google Earth Engine). JURNAL SAINTIS, 24(01), 21–28. https://doi.org/10.25299/saintis.2024.vol24(01).15487

Purnama, S. M., Ayu Karondia, L., Renes, R., Wahyuningsih, N., & Muflichin Purnama, S. (2022, December 11). Identifikasi Dampak Perubahan Iklim Berbasis Cloud Engine (Studi Kasus: Time Series Bencana Banjir Desa Tumbit, Kecamatan Teluk Bayur Kabupaten Berau).

Shen, X., Wang, D., Mao, K., Anagnostou, E., & Hong, Y. (2019). Inundation extent mapping by synthetic aperture radar: A review. Remote Sensing, 11(7). https://doi.org/10.3390/RS11070879

Sørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index:

Evaluation of different methods based on field observations. Hydrology and Earth System Sciences,

10(1), 101–112. https://doi.org/10.5194/hess-10-101-2006

Sumiati, S., Ummah, E. N., Fernanda, M. F., & Ridwana, R. (2023). Perbandingan Hasil Metode Algoritma Backscattering dan Otsu Thresholding dalam Identifikasi Genangan Banjir di Kota Bogor. Media Komunikasi Geografi, 24(1), 1–14. https://doi.org/10.23887/mkg.v24i1.56080

Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 164, pp. 152–170). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2020.04.001

Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332– 343. https://doi.org/10.1016/j.jhydrol.2014.03.008

Uddin, K., Matin, M. A., & Meyer, F. J. (2019). Operational flood mapping using multi-temporal Sentinel-1 SAR images: A case study from Bangladesh. Remote Sensing, 11(13).

https://doi.org/10.3390/rs11131581

Downloads

Published

2025-12-26

How to Cite

Kenya Cita Ayudhia, & Nur Sawiji. (2025). Penerapan Teknologi Ramah Lingkungan Dalam Pemetaan Genangan Air Pada Wilayah Rawan Banjir Menggunakan Google Earth Engine (Studi Kasus: Kabupaten Demak). Jurnal Kota Wali, 1(1), 45–57. Retrieved from https://jurnal.demakkab.go.id/kotawali/article/view/5

Issue

Section

Articles